8503AG Hydrogen Thyratron

The data to be read in conjunction with the Hydrogen Thyratron Preamble.

ABRIDGED DATA

Flange mounted ruggedised hydrogen-filled triode thyratron, positive grid, for pulse operation. A hydrogen reservoir is incorporated.

Peak forward anode voltage	20	kV max
Peak anode current		
Average anode current		
Anode heating factor	3.9 x 10 ⁹ \	/Apps max
Peak output power	2.0	MW max

GENERAL

Electrical

Cathode (connected internally		
to one end of heater)	oxide co	oated
Heater voltage	6.3 \pm 7.5°	% V
Heater current	10.6	Α
Tube heating time (minimum)	3.0	min

Mechanical

	.168.35 mm (6.628 inches) max
Clearance required below	
mounting flange	31.75 mm (1.250 inch) min
Overall diameter (excluding	
mounting flange)	65.1 mm (2.563 inches) max
Net weight	340 g (12 ounces) approx
Mounting position	any
Tube connections	see outline
Top cap	BS448-CT3
Top cap connector	MA359

Coolingnatural

Whilst e2v technologies has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v technologies accepts no liability beyond the set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.

e2v technologies (uk) limited, Waterhouse Lane, Chelmsford, Essex CM1 2QU United Kingdom Holding Company: e2v technologies plc Telephone: +44 (0)1245 493493 Facsimile: +44 (0)1245 492492

 $Contact~e2v~by~e-mail:~\underline{enquiries@e2v.com}~or~visit~\underline{www.e2v.com}~for~global~sales~and~operations~centres.$

108808

PULSE MODULATOR SERVICE MAXIMUM AND MINIMUM RATINGS (Absolute values)

Min

May

IVIIN	iviax	(
Anode		
Peak forward anode voltage (see note 1)	20	kV
(see note 2)	20	kV
Peak anode current	325	Α
Average anode current Rate of rise of anode current	500	mA
(see note 3)	1500	A/μs
Anode heating factor	3.9 x 10 ⁹	VApps
Grid		
Unloaded grid drive pulse voltage		
(see note 4)	-	V
Grid pulse duration	-	μS
(see note 3)180	-	V/μs
Peak inverse grid voltage	200	V
Loaded grid bias voltage 0 Forward impedance of	-120	V
grid drive circuit	500	Ω
Cathode		
Heater voltage 6.3	3 ± 7.5%	V
Tube heating time	-	min
Environmental		
Environmental performance	see	note 5
Ambient temperature –50	+90	°C
Altitude	3	km
-	10,000	ft

CHARACTERISTICS

	Min	Тур	Max	
Critical DC anode voltage for conduction (see note 6)		0.3	1.0	kV
Anode delay time (see notes 6 and 7) Anode delay time drift		0.3	0.65	μS
(see notes 6 and 8)				μS
Time jitter (see notes 6 and 9)	. see	note 10	U	ns aph
Heater current (at 6.3 V)	9.6	10.6	11.6	Α

NOTES

1. This is the maximum forward hold-off voltage imposed on the thyratron in a pulse modulator circuit. Tubes are tested at 20 kV peak forward anode voltage, with the charging reactor inductance and pulse forming network capacitance resonant at 1000 pps. For instantaneous starting applications the maximum permissible peak forward voltage is 16 kV; this must not be reached in less than 0.04 s and there must be no overshoot.

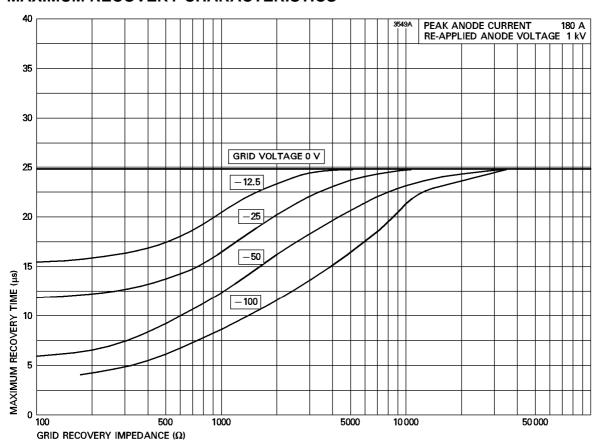
- 2. In pulsed operation the peak inverse anode voltage, exclusive of a spike of 0.05 ms duration, must not exceed 5.0 kV during the first 25 μs after the pulse.
- 3. This rate of rise refers to that part of the leading edge of the pulse between 25% and 75% of the pulse amplitude.
- 4. Measured with respect to cathode potential.
- Original samples of this tube type have been successfully tested to transportation tests specified in BS EN 60068-2-64 test Fh and BS EN 60721-3-2 part 3, section 2.
- 6. The typical figures are obtained on test using conditions of minimum grid drive. Improved performance can be expected by increasing the grid drive.
- 7. The time interval between a point on the leading edge of the unloaded grid pulse at 25% of the pulse amplitude and the point where anode conduction takes place.
- 8. Normally taken as the drift in delay time over a 5-minute run at full ratings between the second and seventh minutes of operation.
- 9. The variation of firing time measured at 50% of current pulse amplitude.
- The recovery characteristics are controlled on a sampling basis.

HEALTH AND SAFETY HAZARDS

e2v technologies hydrogen thyratrons are safe to handle and operate, provided that the relevant precautions stated herein are observed. e2v technologies does not accept responsibility for damage or injury resulting from the use of electronic devices it produces. Equipment manufacturers and users must ensure that adequate precautions are taken. Appropriate warning labels and notices must be provided on equipments incorporating e2v technologies devices and in operating manuals.

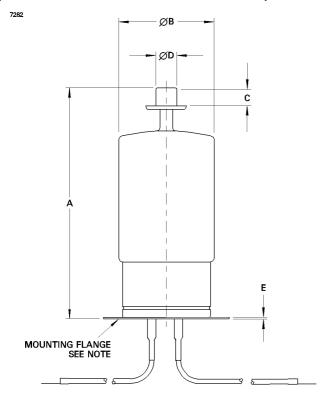
High Voltage

Equipment must be designed so that personnel cannot come into contact with high voltage circuits. All high voltage circuits and terminals must be enclosed and fail-safe interlock switches must be fitted to disconnect the primary power supply and discharge all high voltage capacitors and other stored charges before allowing access. Interlock switches must not be bypassed to allow operation with access doors open.



X-Ray Radiation

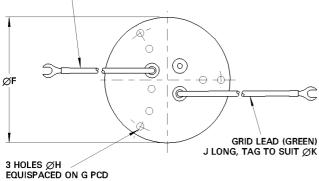
All high voltage devices produce X-rays during operation and may require shielding. The X-ray radiation from hydrogen thyratrons is usually reduced to a safe level by enclosing the equipment or shielding the thyratron with at least 1.6 mm (1/16 inch) thick steel panels.


Users and equipment manufacturers must check the radiation level under their maximum operating conditions.

MAXIMUM RECOVERY CHARACTERISTICS

OUTLINE

(All dimensions without limits are nominal)


Ref	Millimetres	Inches
Α	162.00 ± 6.35	6.378 ± 0.250
В	65.10 max	2.563 max
С	9.53 min	0.375 min
D	14.38 ± 0.18	0.566 ± 0.007
Е	1.6	0.063
F	88.9	3.500
G	76.2	3.000
Ι	5.0	0.197
J	152.4 min	6.000 min
K	6.0	0.236

Inch dimensions have been derived from millimetres.

Outline Note

The mounting flange is the connection for the cathode and the heater return.

